
QUIZALOFOP-P-ETHYL

641

ISO common name	Quizalofop-P-ethyl
Chemical name	Ethyl (R)-2-[4-(6-Chloroquinoxalin-2-yloxy)phenoxy]propionate
Empirical formula	$C_{19}H_{17}ClN_2O_4$
RMM	372.8
<i>m.p.</i>	76.1~77.1 °C
<i>v.p</i> .	1.1 x 10 ⁻⁴ mPa at 20 °C
Solubility	In water, 6.1×10^{-4} g/l at 20 °C, pH 5.0 – 7.0; Xylene, ethyl acetate and
	acetone > 250 g/l, 1,2-dichloroethane > 1000 g/l at $22 - 23$ °C; methanol
	34.87 g/l, n-heptane 7.168 g/l at 20 °C
Description	Off-white powder
Stability	Stable at neutral and acidity condition.
Formulation	Emulsifiable concentrate

QUIZALOFOP-P-ETHYL TECHNICAL 641/TC/M/-

1. Sampling. Take at least 100 g.

2. Identity tests

2.1 GC. Use the GC method below. The relative retention time of Quizalofop-ethyl in the sample solution should not deviate by more than 1.5% from that of calibration solution.

2.2 HPLC. Use the HPLC method below. The relative retention time of Quizalofop-p-ethyl in the sample solution should not deviate by more than 1.5% from that of calibration solution.

2.3 Infrared. Prepare potassium bromide discs for the Quizalofop-p-ethyl technical sample and reference substance. Scan the discs from 4000-400 cm⁻¹. The spectrum produced from the sample should not differ significantly from that of the standard.

3. Quizalofop-ethyl

OUTLINE OF METHOD

Quizalofop-ethyl is determined by gas chromatography using HP-5 15 m X 0.53 mm X 1.5 μ m film thickness capillary column using FID detector and di-n-octyl phthalate as internal standard.

REAGENTS

Acetone: HPLC grade

Quizalofop-ethyl reference standard of known purity: mixture of R and S isomers of defined composition.

Di-n-octyl phthalate, must not include impurity affect chromatographic analysis

Internal standard solution: Weigh approximately 4 g di-n-octyl phthalate (accurate to 10 mg) into 1000 ml brown volumetric flask, dissolve and dilute with acetone to volume. Mix thoroughly.

Calibration solution: prepare calibration solutions in duplicate. Weigh approximately (accurate to 0.1 mg) 50 mg of Quizalofop-ethyl working standard into 10 ml volumetric flask. Pipette accurately 10 ml internal standard solution into the flask and mix thoroughly (solution C_{A1} and C_{B1}).

APPARATUS

Gas chromatography equipped with FID detector Chromatographic work station Chromatographic column: HP-5 15 m X 0.53 mm X 1.5 µm film thickness

PROCEDURE

(a) Gas chromatographic conditions (typical):

Column HP-5 15 m X 0.53 mm X 1.5 μ m film thickness coated with dimethyl polysiloxane (or equivalent)

Injection system

Injector: Split injection Split Ratio: 10 : 1 Injection volume: 1.0 μl

Temperatures:

Column: 250 °C

Detector: 250 °C Injector: 250 °C

Gas flow rates

Carrier gas (high purity Nitrogen) flow rate: 15 ml/min.

Hydrogen: approximately 30 ml/min.

Air: approximately 300 ml/min.

Retention time

Di-n-octyl phthalate: approximately 2.5 min, Quizalofop-ethyl: approximately 3.5 min.

(b) Sample preparation: Weigh (accurate to 0.1mg) sufficient sample to contain about 50 mg Quizalofop-ethyl into 10 ml volumetric flask. Pipette accurately 10 ml internal standard solution into the flask and mix thoroughly. Prepare in duplicate (S_{11} and S_{21})

(c) Equilibration of the chromatographic system. Inject the calibration solution and repeat the injections until retention times and the response factors calculated from the peak areas vary by less than 1% for successive injections.

(d) Determination: Inject in duplicate 1 μ l portions of each sample solution bracketing them by injections of the calibration solution as follows: C_{A1}, S₁₁, S₁₁, C_{B1}, S₂₁, S₂₁, C_{A1}, and so on. Measure the relevant peak areas.

(e) Calculation

$$f_{i} = \frac{I_{r} \times s \times P}{H_{s} \times r}$$

Content of Quizalofop – ethyl (X1) = $\frac{H_{w} \times f \times q}{I_{a} \times w}$ g/kg

where:

 f_i = individual response factor f = mean response factor

- H_s = peak areas of quizalofop-ethyl in the calibration solution
- I_r = peak areas of di-n-octyl phthalate in the calibration solution
- H_w = peak areas of quizalofop-ethyl in the sample solution
- I_q = peak areas of di-n-octyl phthalate in the sample solution
- s = mass of quizalofop-ethyl in the calibration solution (mg)
- r = mass of di-n-octyl phthalate in the calibration solution (mg)
- q = mass of di-n-octyl phthalate in the sample solution (mg)
- w = mass of sample taken (mg)
- P = purity of quizalofop-ethyl standard (g/kg)
- 4. Quizalofop-P-ethyl

OUTLINE OF METHOD Quizalofop-P-ethyl(R-enantiomer) is separated from the s-enantiomer and determined by normal phase HPLC on chiral column using UV detector at 237 nm.

REAGENTS

n-Hexane: HPLC grade

Isopropanol: HPLC grade

Quizalofop-P-ethyl reference standard of known purity: mixture of R and S isomers of defined composition (50:50).

Preparation of calibration solution in duplicate: Weigh approximately (accurate to 0.1mg) 10 mg Quizalofop-p-ethyl standard into 10 ml volumetric flask. Dissolve to the mark with mobile phase and mix thoroughly (Solution C_{A2} and C_{B2}).

APPARATUS

High-performance liquid chromatography equipped with UV detector Column stainless steel: 250 mm X 4.6 mm (id), CHIRALPAKAD-H, 5 μ m, or equivalent Chromatographic work station Ultrasonic bath

PROCEDURES

(a) Liquid Chromatographic Conditions (typical) Mobile phase: n-hexane + Isopropanol = 90 + 10 (v/v) Flow rate: 0.6 ml/min Detector wavelength: 237 nm Injection volume: 5 µl Column temperature: 25 °C Retention time: S-isomer approximately 18.7 min, Quizalofop-p-ethyl approximately 17.1 min. (b) System equilibration. Inject 5 μ l portions of C_{A2} until the peak areas for both R-isomer and S-isomer deviate less than 1.0% for the two successive injections and the area ratio of R-isomer and S-isomer should be 50 : 50 and the deviation should be less than 1%.

(c) Preparation of sample solution: Weigh (accurate to 0.1mg) sufficient sample to contain about 10 mg Quizalofop-p-ethyl into 10 ml volumetric flask. Dissolve to the mark with mobile phase and mix thoroughly. Filter through 0.45 μ m filter membrane if necessary. Prepare in duplicate (S₁₂ and S₂₂)

(d) Determination: Inject in duplicate 1 μ l portions of each sample solution bracketing them by injections of the calibration solution as follows: C_{A2} S₁₂, S₁₂, C_{B2} S₂₂, S₂₂, C_{A2} and so on. Measure the relevant peak areas.

(e) Calculation

 $K = \frac{H_R}{H_R + H_S} \times 100\%$ Content of Quizalofop-p-ethyl = X₁×K

Where:

 H_R = mean average of the peak areas of R-isomer in the two sample solutions;

 H_S = mean average of the peak areas of S-isomer in the two sample solutions;

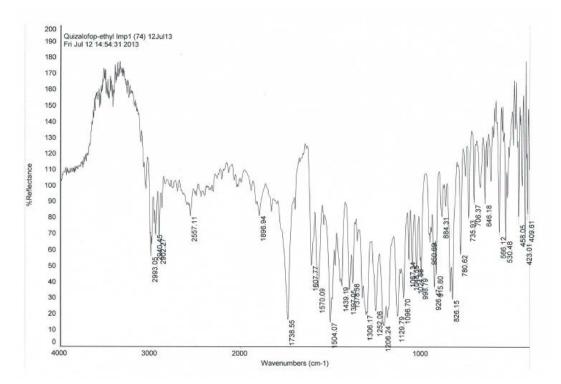


Fig. 1 Infrared spectra of Quizalofop-p-ethyl

QUIZALOFOP-P-ETHYL EMULSIFIABLE CONCENTRATE

******_

1. Sampling. Take at least 1 l.

2. Identity tests. As for Quizalofop-p-ethyl technical *****

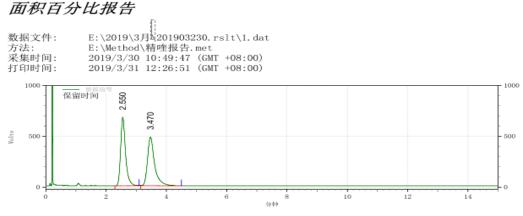
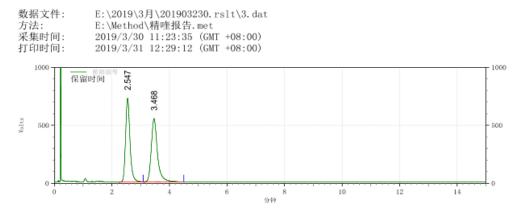
3. Quizalofop-p-ethyl. As for Quizalofop-p-ethyl technical ***** except: Sample preparation:

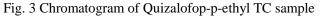
Quizalofop-ethyl : Weigh (accurate to 0.1 mg) sufficient sample to contain about 50 mg Quizalofop-ethyl into 10 ml volumetric flask. Pipette accurately 10 ml internal standard solution into the flask and mix throughly. Prepare in duplicate (S_{11} and S_{21})

Quizalofop-P-ethyl: Weigh accurately sufficient sample to contain about 10 mg Quizalofop-pethyl into 10 ml volumetric flask. Dissolve to the mark with mobile phase and mix throughly. Use 0.45 μ m filter membrane if necessary. Prepare in duplicate (S₁₂ and S₂₂)

精喹禾灵标样谱图

第1页(共1页)


Fig. 2 Chromatogram of Quizalofop-ethyl standard

精喹禾灵原药样品谱图

第1页(共1页)

面积百分比报告

精喹禾灵乳油(10%)标样谱图

第1页(共1页)

面积百分比报告

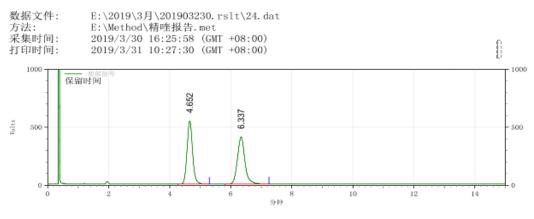
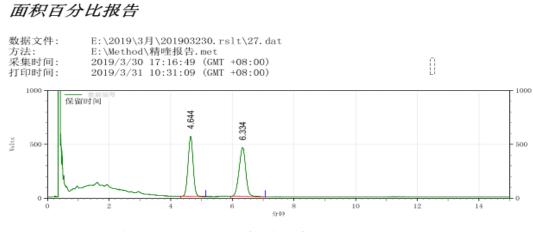
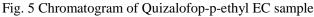




Fig. 4 Chromatogram of Quizalofop-ethyl EC standard

精喹禾灵乳油(10%)样品谱图

第1页(共1页)

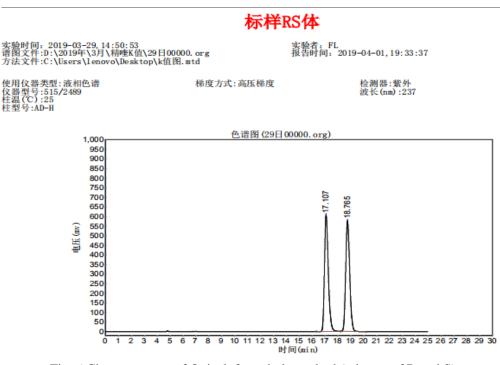
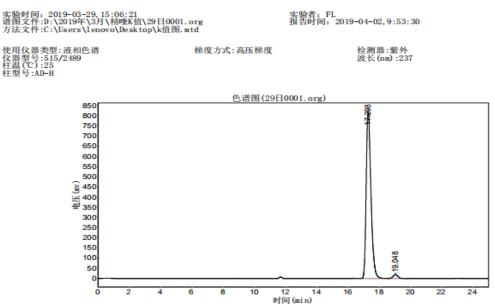



Fig. 6 Chromatogram of Quizalofop-ethyl standard (mixture of R and S)

原药A

Fig. 7 Chromatogram of Quizalofop-p-ethyl TC sample